
Data Sheet N2612, REV.A

RoHS

S2M0080120N 1200V SIC POWER MOSFET

Circuit Diagram

Maximum Ratings(T=25°C unless otherwise specified)

Description

S2M0080120N is single SiC Power MOSFET packaged in SOT-227 case. The device is a high voltage n-channel enhancement mode MOSFET that has very low total conduction losses and very stable switching characteristics over temperature extremes. The S2M0080120N is ideal for energy sensitive, high frequency applications in challenging environments.

Features

- Positive temperature characteristics, easy to parallel.
- Low on-resistance Typ. RDS(on) = 77mQ .
- Fast switching speed and low switching losses.
- Very fast and robust intrinsic body diode.
- Process of non-bright Tin electroplatin

Applications

- EV Fast Charging Modules
- EV On Board Chargers
- Solar Inverters
- Online UPS/Industrial UPS
- SMPS (Switch Mode Power Supplies)
- DC-DC Converters
- ESS (Energy Storage Systems)

Characteristics Condition Symbol Max. Units V 1200 Drain Source Voltage VDSS V_{GS} = 0V, I_{DS} = 100uA, T_C = 25°C Gate Source Voltage V_{GSS} $T_c = 25^{\circ}C$, Absolute maximum values, AC (f>1Hz) -10 to +25 V Gate Source Voltage -5 to +20 V VGSOP T_c = 25°C Recommended Operational Values **Continuous Drain Current** $V_{GS} = 20V, T_C = 25^{\circ}C$ I_D 36 А $V_{GS} = 20V, T_{C} = 100^{\circ}C$ 25 А ΙD T_C=25°C Pulsed Drain Current I_{D,pulse} 82 А Power Dissipation \mathbf{P}_{D} Tc=25°C 176 W SOT-227 Mounting Torque M4 Screw 1 Nm

• China - Germany - Korea - Singapore - United States •

http://www.smc-diodes.com - sales@ smc-diodes.com •

Technical Data Data Sheet N2612, REV.A

RoHS

Electrical Characteristics(T=25°C unless otherwise specified)

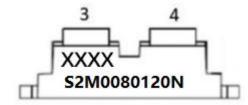
Characteristics	Symbol	Condition	Min.	Тур.	Max.	Unit s
Drain Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0V, I _D = 1mA	1200			V
		V_{DS} = V_{GS} , I_D = 10mA	2.0	2.8	4.0	V
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} = V _{GS} , I _D = 10mA, T _J = 175 °C		1.8		V
	I _{DSS}	V _{DS} = 1200V, V _{GS} = 0V		0.1	1.0	uA
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 1200V, V _{GS} = 0V, T _J = 175 °C		1		uA
Osta Osuma Laskana Osumant	I _{GSS+}	V _{GS} = 20V, V _{DS} = 0V		10	100	nA
Gate Source Leakage Current	I _{GSS-}	V _{GS} = -5V, V _{DS} = 0V		-10	-100	nA
Drain Source On-State	Б	V _{GS} = 20V, I _D = 20A		77	100	mΩ
Resistance	R _{DS(on)}	V _{GS} = 20V, I _D = 20A, T _J = 175 °C		137		mΩ
Transconductance	rife	V _{DS} = 20 V, I _D = 20 A		10.5		S
	gfs	V _{DS} = 20 V, I _D = 20 A, T _J = 175 °C		8		S
Input Capacitance	CISS	$V_{GS} = 0V,$		1324		
Output Capacitance	Coss	V _{DS} = 1000V		74		pF
Reverse Transfer Capacitance	C _{RSS}	V _{AC} = 25mV		3.4		
Coss Stored Energy	Eoss	f = 200kHz		37		uJ
Turn-On Switching Energy	Eon	V _{DS} = 800V, V _{GS} = -5/20V		290		1
Turn-Off Switching Energy	EOFF	I_D = 20A, $R_{G(ext)}$ = 2.5 Ω		20		uJ
Turn-On Delay Time	t _{d(on)}	V _{DS} = 800V, V _{GS} = -5/20V		20		
Rise Time	tr	I _D = 20A, R _{G(ext)} = 2.5Ω, L=975uH		11		
Turn-Off Delay Time	$t_{d(off)}$	FWD=S2M0080120N		20		ns
Fall Time	t _f			7.8		
Internal Gate Resistance	R _{G(int)}	f = 1MHz, VAC = 25 mV, D-S short		3.3		Ω
Gate to Source Charge	Q_{gs}	V _{DS} = 800V, V _{GS} = -5/20V		23		
Gate to Drain Charge	Q_{gd}	I _D = 20A		14		nC
Total Gate Charge	Qg			54		

RoHS

Technical Data Data Sheet N2612, REV.A

Reverse Diode Characteristics:

Characteristics	Symbol	Condition	Тур.	Max.	Units
Diode Forward Voltage	V _{SD}	V _{GS} = -5V, I _{SD} = 10A	4.0		V
	V _{SD}	V _{GS} = -5V, I _{SD} = 10A, T _J = 175°C	3.5		V
Continuous Diode Forward Current	ls	V _{GS} = -5V, T _C = 25℃		41	А
Reverse Recovery Time	t _{rr}	V _{GS} = -5V, I _{SD} = 20A, T _J = 25°C	25		ns
Reverse Recovery Charge	Qrr	V _R = 800V	102		nC
Peak Reverse Recovery Current	I _{mm}	dif/dt= 1950A/µs	6.7		А


Thermal-Mechanical Specifications:

Characteristics	Symbol	Condition	Specification	Units
Junction Temperature	TJ	-	-55 to +175	°C
Storage Temperature	T _{stg}	-	-55 to +175	°C
Typical Thermal Resistance Junction to Case	R _{θJC}	DC operation	0.85	°C/W

Ordering Information:

Device	Package	Shipping
S2M0080120N	SOT-227	36pcs/box

Marking Diagram

Where XXXXX is YYWWL

S2M = Device Type

0080

- = R_{DS}(on) = Reverse Voltage (1200V) 120 Ν = Package
- SSG = SSG

YY

ww

= Year

= Week

Cautions: Molding resin Epoxy resin UL:94V-0

• China - Germany - Korea - Singapore - United States •

• http://www.smc-diodes.com - sales@ smc-diodes.com •

RoHS

Technical Data Data Sheet N2612, REV.A

Ratings and Characteristics Curves

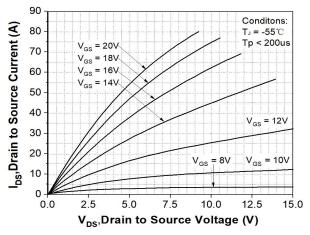


Figure 1. Output Characteristics T_J = -55 °C

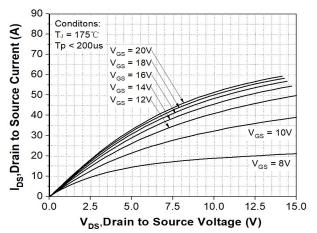
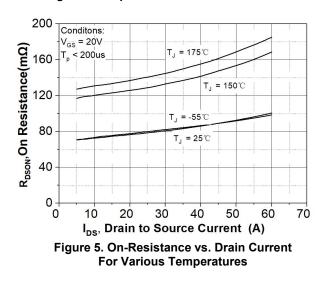
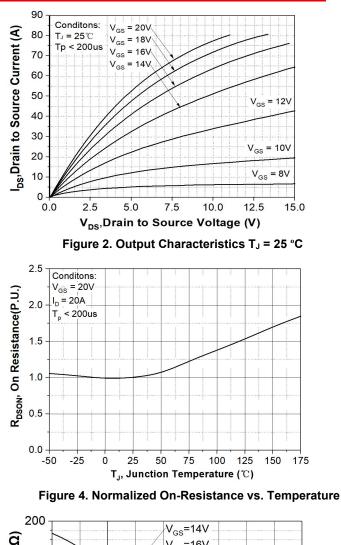
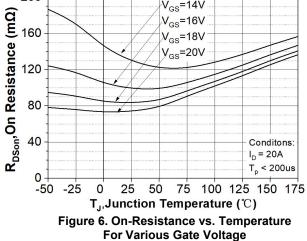
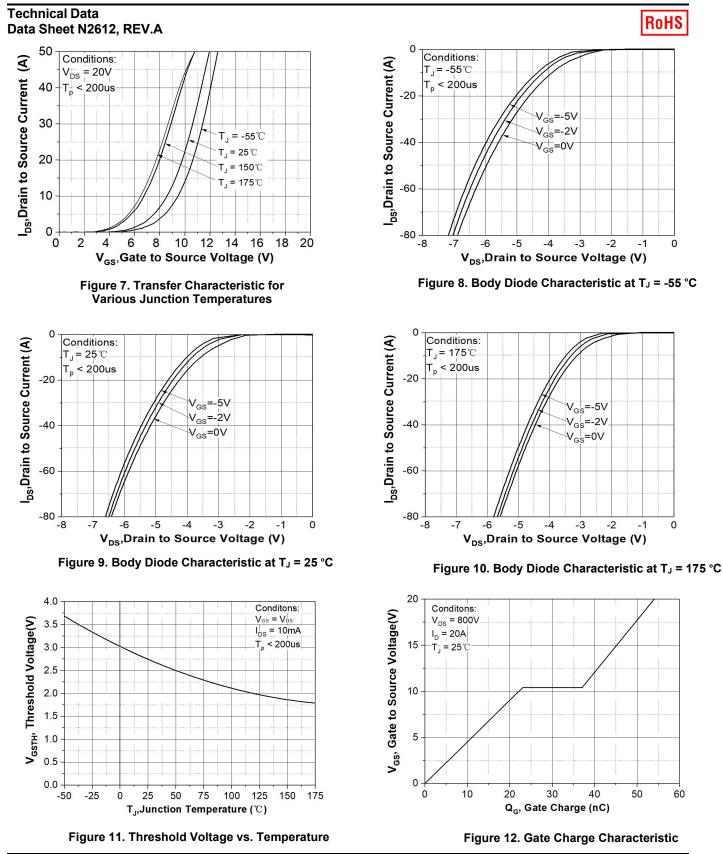





Figure 3. Output Characteristics T_J = 175°C



- China Germany Korea Singapore United States •
- http://www.smc-diodes.com sales@ smc-diodes.com •

S2M0080120N

• China - Germany - Korea - Singapore - United States •

http://www.smc-diodes.com - sales@ smc-diodes.com •

Technical Data

10000

1000

100

10

1

Ö

C,Capacitance (pF)

S2M0080120N

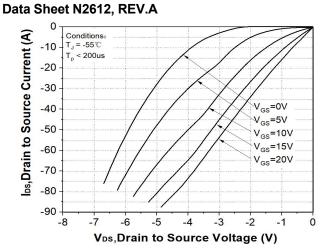
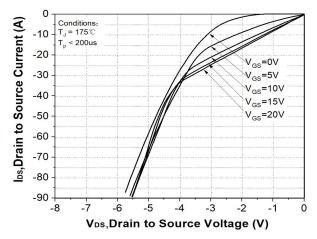



Figure 13. 3rd Quadrant Characteristic at T_J = -55 °C

Ciss

Coss

Crss

50

Figure 15. 3rd Quadrant Characteristic at T_J = 175°C

VGS=0V, f=1MHz

Crss=Cgd

Coss=Cds+Cad

Ciss=Cgs+Cgd, Cds SHORTED

150

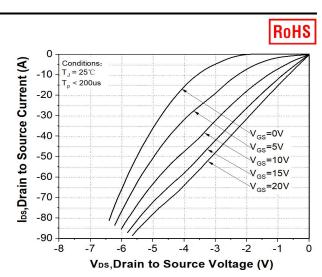
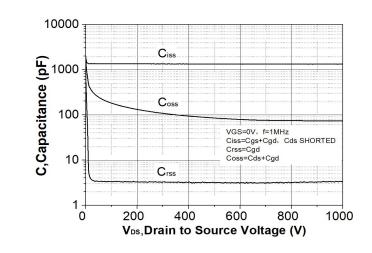
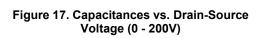
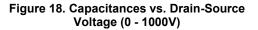


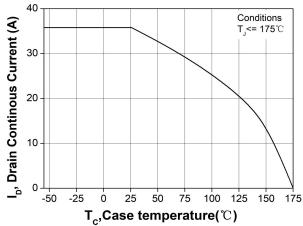
Figure 14. 3rd Quadrant Characteristic at T_J = 25 °C

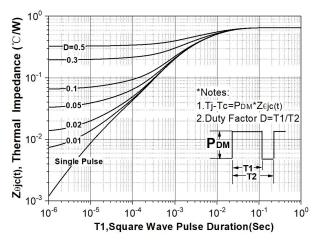

Figure 16. Output Capacitor Stored Energy

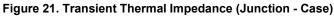
100

VDS, Drain to Source Voltage (V)



- China Germany Korea Singapore United States •
- http://www.smc-diodes.com sales@ smc-diodes.com •


200



Technical Data Data Sheet N2612, REV.A

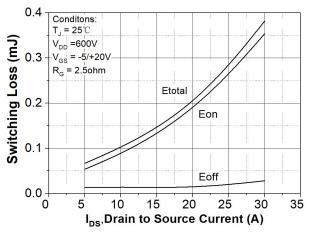


Figure 23. Clamped Inductive Switching Energy vs. Drain Current (V_{DD} = 600V)

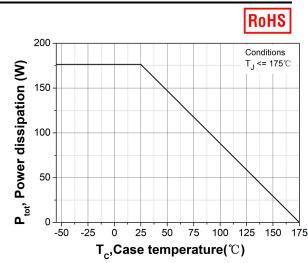


Figure 20. Maximum Power Dissipation Derating vs. Case Temperature

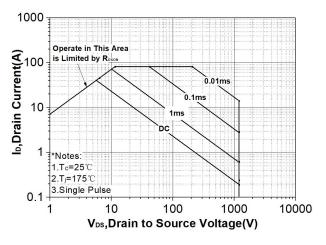
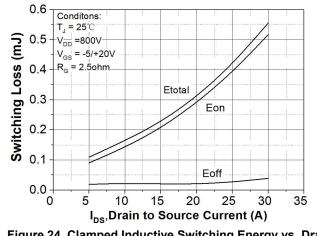
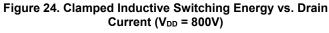
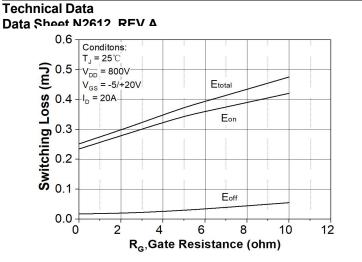





Figure 22. Safe Operating Area

- China Germany Korea Singapore United States
 - http://www.smc-diodes.com sales@ smc-diodes.com -

17

DIDDE

SOLUTIONS

Figure 25. Clamped Inductive Switching Energy vs. R_{G(ext)}

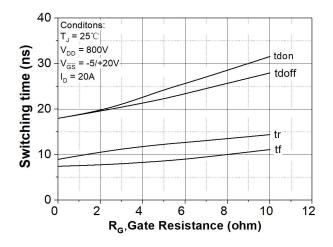


Figure 27. Switching Times vs. R_{G(ext)}

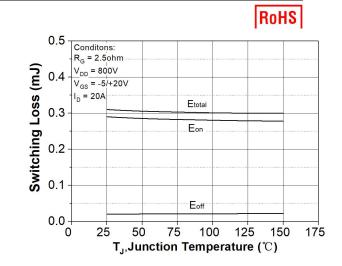


Figure 26. Clamped Inductive Switching Energy vs. Temperature

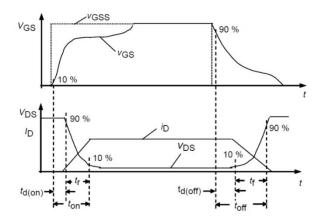
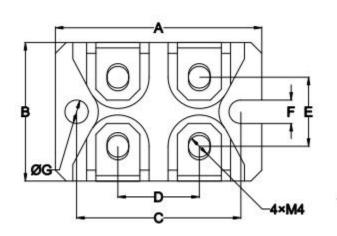
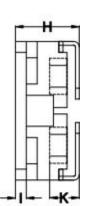


Figure 28. Switching Times Definition


• http://www.smc-diodes.com - sales@ smc-diodes.com •



RoHS

Technical Data Data Sheet N2612, REV.A

Mechanical Dimensions SOT-227

SYMBOL	Dimensions in millimeters			
	Min.	Max.		
A	37.8	38.2		
В	24.8	25.21		
С	29.9	30.55		
D	14.5	15.5		
E	12.2	13.45		
F	4.1	4.31		
G	φ4.1	φ4.31		
Н	11	12.5		
I	1.9	2.1		
K	4.3	6.5		

China - Germany - Korea - Singapore - United States
 http://www.smc-diodes.com - sales@ smc-diodes.com

Technical Data Data Sheet N2612, REV.A

SOLUTIONS

RoHS

DISCLAIMER:

1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the SMC Diode Solutions sales department for the latest version of the datasheet(s).

2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.

3- In no event shall SMC Diode Solutions be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). SMC Diode Solution assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
4- In no event shall SMC Diode Solutions be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.

5- No license is granted by the datasheet(s) under any patents or other rights of any third party or SMC Diode Solutions.
6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of SMC Diode Solutions.

7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations..

• http://www.smc-diodes.com - sales@ smc-diodes.com •